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Abstract

In this paper we present a new class of coarse-grained stochastic processes and Monte Carlo simulations, de-

rived directly from microscopic lattice systems and describing mesoscopic length scales. As our primary example,

we mainly focus on a microscopic spin-flip model for the adsorption and desorption of molecules between a surface

adjacent to a gas phase, although a similar analysis carries over to other processes. The new model can capture

large scale structures, while retaining microscopic information on intermolecular forces and particle fluctuations.

The requirement of detailed balance is utilized as a systematic design principle to guarantee correct noise fluc-

tuations for the coarse-grained model. We carry out a rigorous asymptotic analysis of the new system using

techniques from large deviations and present detailed numerical comparisons of coarse-grained and microscopic

Monte Carlo simulations. The coarse-grained stochastic algorithms provide large computational savings without

increasing programming complexity or the CPU time per executed event compared to microscopic Monte Carlo

simulations.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Microscopic simulation methods such as molecular dynamics and Monte Carlo algorithms provide a

fundamentally derived computational tool capable of describing complex, out-of-equilibrium interactions

between atoms and molecules. With the current computing capabilities, these methods yield unprecedented
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insights into numerous problems ranging from physicochemical and biological processes, to pattern rec-

ognition and image processing. Despite their widespread use and the substantial progress in related

computational methods, molecular simulations are limited to short length and time scales, capable of

simulating a relatively small number of atoms/molecules for quite short time periods, while device sizes and

morphological features observed in experiments often involve much larger spatial and/or temporal scales. A

major obstacle in addressing this multiscale modeling challenge is the lack of a rigorous mathematical and

computational framework providing a direct link of microscopic scales to complex mesoscopic and mac-

roscopic phenomena which are dictated by particle/particle interactions.
In this direction, our work focuses on developing a novel stochastic modeling and computational

framework, capable of efficiently describing much larger length scales than conventional Monte Carlo

(MC) simulations while still incorporating microscopic details. Using as our main paradigm a microscopic

spin-flip model for the adsorption and desorption of molecules between a surface and the overlying gas

phase, we derive a coarse-grained stochastic jump process describing the system at mesoscopic length scales.

The new stochastic process and the associated coarse-grained MC simulations have the potential to capture

large scale morphological structures, while they retain microscopic information on intermolecular forces

and particle fluctuations. It is numerically shown that the necessary CPU can be reduced by orders of
magnitude for large systems and long potentials.

Some aspects of the coarse-grained MC simulations proposed in this paper are in retrospect intuitively

clear and have to an extent being partly introduced in a related context in the existing literature. In [20] the

authors propose as a computational tool for the stochastic Cahn–Hilliard equation a continuous order

parameter MC model. This model is essentially a stochastic phenomenological model, first employed in [17]

as a starting point for the derivation of the stochastic Cahn–Hilliard model. In addition, a discrete order

parameter stochastic model, similar to the ones derived here from microscopics but without the inclusion of

short range interactions, is constructed in [10], and following formal calculations in [17] is used to obtain a
stochastic mesoscopic equations for diffusion and adsorption/desorption processes. Furthermore, in the

context of a direct derivation of a mesoscopic model from a true microscopic one in the infinite particle

limit, the coarse-grained stochastic processes proposed below are also intimately related to intermediate

technical steps in the derivation of deterministic and stochastic mesoscopic models arising as mean field

limits of Ising systems [4,7,8,16].

The novelty in our approach lies mainly in the following points: First, we derive a hierarchy of suc-

cessively coarse-grained MC simulations directly from the microscopic processes as approximations in

larger length scales and obtain suitable error estimates. These models span a hierarchy of length scales
starting from the microscopic to the mesoscopic and macroscopic scales, and involve Markovian birth–

death processes. Detailed asymptotics such as large deviations estimates rigorously justify and clarify these

connections.

Second, we study computationally the coarse-grained models, and compare them with microscopic MC

simulations, as well as mesoscopic solutions. We demonstrate that the full hierarchy satisfies detailed

balance relations and as a result yields self-consistent random fluctuation mechanisms, i.e., consistent

mesoscopic models for stochastic noise. Asymptotic analysis and simulations highlight the regimes where

microscopic and mesoscopic noise mechanisms are asymptotically identical.
Finally, the new simulations provide significantly faster MC simulations which are easy to im-

plement and are directly related to the microscopics. They also give rise to a new efficient particle

method to simulate stochastic PDE (SPDE) derived from microscopic models [8,10,24]. The advantages

are that we (a) bypass difficulties arising in the simulation of highly singular white noise terms typi-

cally arising in SPDE and (b) preserve detail balance at the level of the numerical scheme. We note

that in stochastic mesoscopic PDE models with non-conservative mechanisms such as adsorption/de-

sorption it is not clear what is the exact form of the stochastic correction which will ensure detailed

balance.
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Concluding the introduction we outline the structure of this paper. In Section 2 we present the micro-

scopic model and set our notation and assumptions. In Section 3 we derive the coarse-grained process and

corresponding MC simulations by coarse-graining the interparticle potential and the spin-flip rates in a

fashion similar to block spin renormalization [15,9]. In Section 4 we demonstrate that the coarse-grained

process satisfies detailed balance, while a Large Deviation analysis provides a mathematically rigorous

justification that noise terms are appropriately simulated at the mesoscopic level. In Section 5 we discuss

numerical comparisons of microscopic and coarse-grained MC simulations. Finally in Appendix A we

outline how the coarse-graining procedure presented here for a spin-flip mechanism can be used in other
microscopic processes such as surface diffusion.

2. Microscopic processes

We consider as the physical domain the d-dimensional torus

Td :¼ ½0; 1�d ;

with the usual periodic boundary conditions. We first divide Td in md square coarse cells each with volume

1=md . Subsequently each coarse cell is subdivided into qd microcells (or just ‘‘cells’’ for brevity) each with
volume 1=ðmqÞd . Thus the torus Td is divided in N ¼ ðmqÞd cells. Each coarse cell is denoted by

Dk ¼ Dm;k; k ¼ 1; . . . ;md :

We may now define the coarse lattice corresponding to the coarse cell partition,

Lc :¼
1

m
Zd \ Td :

With a slight abuse of notation and suitable ordering, we will consider the integers k ¼ 1; . . . ;md as the

lattice points ofLc. The coarse-grained processes defined later are set precisely on this lattice. Furthermore,

we define the fine lattice L corresponding to the microcell partition,

L :¼ 1

mq
Zd \ Td :

We use the notation x 2 L to denote lattice points ofL. The microscopic processes are defined on the finer
latticeL. In order to simplify algebraic calculations it is convenient to pick m and q to be powers of 2 but
here we choose not to do so hopefully keeping the notation simpler. Finally we point out that from the

construction of the lattices we have

Lc � L:

For simplicity in exposition and convenience in notation we concentrate on the discussion of one-dimen-
sional models, however our results extend to the d-dimensional case in a straightforward manner.

2.1. Microscopic interactions and Gibbs states on L

Here we consider Ising-type models defined on L. At each lattice site x 2 L an order parameter is

allowed to take the values 0 and 1 describing vacant and occupied sites, respectively. In accordance to the

classical Ising model, we refer to the order parameter as spin. A spin configuration r is an element of the
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configuration space R ¼ f0; 1gL; we write r ¼ frðxÞ : x 2 Lg, where rðxÞ 2 f0; 1g denotes the spin at x.
The energy H of the system, evaluated at r, is given by the Hamiltonian,

HðrÞ ¼ � 1
2

X
x2L

X
y 6¼x

Jðx� yÞrðxÞrðyÞ þ
X

hrðxÞ; ð2:1Þ

where h is the external field and J is the interparticle potential.
Equilibrium states of the Ising model are described by the Gibbs states at the prescribed temperature T ,

lL;bðdrÞ ¼
1

ZL
expð�bHðrÞÞPN ðdrÞ: ð2:2Þ

Here PN ðdrÞ denotes the (product) prior distribution on L:

PNðdrÞ ¼
Y
x2L

qðdrðxÞÞ; ð2:3Þ

where

qðrðxÞ ¼ 0Þ ¼ 1
2
; qðrðxÞ ¼ 1Þ ¼ 1

2

is the distribution of a Bernoulli random variable for each x 2 L. Finally b ¼ 1=ðkT Þ, k being the Boltz-
mann constant and ZL is the partition function, i.e., a normalizing constant so that lL;b is a probability

measure defined on the configuration space R ¼ f0; 1gL.
The interparticle potentials considered in the sequel are defined on the fine lattice L. We consider

potentials with: (a) long range interactions such as electrostatic potentials that extend over the entire lattice

and (b) finite range interactions with a given potential length. In the former case each lattice site interacts

with all N � 1 remaining sites onL. In the latter we denote by the integer 2L the total number of interacting

Fig. 1. Comparison of global MF and microscopic MC simulations for various microscopic potential lengths L indicated and bJ0 ¼ 6.
Each point of the isotherm is obtained by starting from the final microconfiguration of the previous isotherm point and performing

ensemble averaging over 2� 104 MCS after 104 MCS have been disregarded for equilibration. Hysteresis is observed in 1D for suf-
ficiently long potentials. For these simulations m ¼ 240 and q ¼ 1. The inset is a 2D schematic of coarse-graining for N ¼ 12� 12.
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neighboring sites of a given point on the one-dimensional lattice L (see inset in Fig. 1); since 1=N is the
lattice size and the potentials are symmetric, the actual potential radius on L is L=N . Since we consider
periodic boundary conditions on L, then for 2Lþ 1 ¼ N we recover the case of long range interactions.
Consequently in both such cases the (symmetric) interaction potential J ¼ Jðx� yÞ can be written as

Jðx� yÞ ¼ 1

2Lþ 1 V
Nðx� yÞ
2Lþ 1

� �
; x; y 2 L; ð2:4Þ

where V : R 7!R and V ðrÞ ¼ V ð�rÞ; r 2 R. In the case of finite range interactions we will additionally as-

sume that V ðrÞ ¼ 0; jrjP 1. In our numerical experiments in Section 5 we use either a piecewise constant or

a Morse-type potential. In the approximation analysis of Section 3, we assume that

V : R 7!R is smooth in R=f0g

as well as a suitable blow-up condition at 0. Note that for V 2 L1ðRÞ, the choice of the scaling factor
1=2Lþ 1 in (2.4) implies the summability of the potential J , even when N ; L ! 1.

2.2. Microscopic dynamics

The dynamics of Ising-type models considered in the literature consists of a sequence of flips and/or spin

exchanges that correspond to different physical processes. Here we focus on spin-flip mechanisms and

briefly discuss spin exchange mechanisms in Appendix A. More specifically a spin flip at the site x 2 L is a

spontaneous change in the order parameter, 1 is converted to 0 and vice versa. Physically this mechanism

may describe the desorption of a particle from a surface described by the lattice to the gas phase above and
conversely the adsorption of a particle from the gas phase to the surface. Similarly it can describe phase

transitions without order parameter conservation.

If r denotes the configuration prior to a flip at x, then after the flip the configuration is denoted by rx,
where

rxðyÞ ¼ 1� rðxÞ when y ¼ x;
rðyÞ when y 6¼ x:

�

We assume that a flip occurs at x, when the configuration is r, with a rate cðx; rÞ, i.e., a spin flip occurs at x,
during ½t; t þ Dt� with probability cðx; rÞDt þOðDt2Þ. Rigorously the underlying stochastic process frtgtP 0

is defined as a continuous time jump Markov process on L1ðR;RÞ with generator given by [18]:

LNf ðrÞ ¼
X
x2ZN

cðx; rÞ½f ðrxÞ � f ðrÞ�; f 2 L1ðR;RÞ:

An obvious requirement on the resulting dynamics is that they should leave the Gibbs measure (2.2) in-

variant. This condition is called a detailed balance law, and is equivalent to

cðx; rÞ ¼ cðx; rxÞ expð�bDxHðrÞÞ:

The energy difference after performing a spin flip at the site x is

DxHðrÞ ¼ HðrxÞ � HðrÞ ¼ ð2rðxÞ � 1ÞUðxÞ;

where

UðxÞ ¼
X

z 6¼x;z2L
Jðx� zÞrðzÞ � h ð2:5Þ
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is the total energy contribution from the particle interactions with the particle located at the site x 2 L, as
well as the external field h. The simplest type of dynamics satisfying the detailed balance condition is the
Metropolis-type dynamics where,

cðx; rÞ ¼ Wð�bDxHðrÞÞ

yielding the relation on W, WðrÞ ¼ Wð�rÞe�r; r 2 R. Typical choices of Ws are WðrÞ ¼ ð1þ erÞ�1 (Glauber
dynamics), WðrÞ ¼ e�r=2 or WðrÞ ¼ e�rþ (Metropolis dynamics). For such dynamics, the energy barrier for
desorption depends only on the energy difference between the initial and final states.

Here we mainly focus on Arrhenius-type dynamics where the activation energy of surface desorption is
the energy barrier a particle has to overcome in jumping from the surface to the gas phase. The Arrhenius

adsorption/desorption (spin flip) rate is given by

cðx; rÞ ¼ d0ð1� rðxÞÞ þ d0rðxÞ exp½�bðU0 þ UðxÞÞ�; ð2:6Þ

where UðxÞ is defined in (2.5) and U0 is the energy associated with the surface binding of the particle at x;
finally d0 is a rate constant that mathematically can be chosen arbitrarily but is physically related to the pre-
exponential of the microscopic processes.

3. Coarse-graining of microscopic processes

In this section our goal is to derive an approximate mesoscopic Markov process for a suitably defined

coarse-grained variable gt defined on the coarse lattice Lc by equivalently obtaining the corresponding

semigroup generator, starting from the microscopic process rt.
We first introduce the coarse-grained random process defined as an average of the microscopic process

frtgtP 0 over each coarse cell Dk:

gtðkÞ ¼
X
y2Dk

rtðyÞ; k ¼ 1; . . . ;m:

The random process gtðkÞ is defined for each coarse cell Dk of the lattice Lc and satisfies the constraint

06 gtðkÞ6 q, since each coarse cell contains q microcells. Equivalently we may also consider the averaged
version (termed below as coverage)

�ggtðkÞ ¼
1

q

X
y2Dk

rtðyÞ ¼ q�1gtðkÞ:

First recall from the definition of the generator of frtgtP 0 that for all test functions f 2 L1ðR;RÞ,

d

dt
Ef ðrtÞ ¼ ELNf ðrÞ ¼ E

X
x2L

cðx; rtÞ½f ðrxt Þ � f ðrtÞ�: ð3:1Þ

From now on and unless it is otherwise necessary we suppress the t-dependence of rt or gt.
Motivated from the definition of g we define the new configuration space

Hm;q ¼ f0; 1; . . . ; qgLc ;

where g ¼ fgðkÞ : k 2 Lcg and gðkÞ 2 f0; 1; . . . ; qg is the coverage of the coarse cell Dk. We also define the

mapping F : R 7!Hm;q, where
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F ðrÞðkÞ :¼
X
y2Dk

rðyÞ ¼ gðkÞ; k ¼ 1; . . . ;m:

Then for any test function g 2 L1ðHm;q;RÞ we have that

f ðrÞ :¼ gðF ðrÞÞ ¼ gðgÞ ð3:2Þ

is a test function in L1ðR;RÞ and therefore from (3.1) we have:

d

dt
Ef ðrÞ ¼ E

X
x2L

cðx; rÞ½f ðrxÞ � f ðrÞ� ¼ E
X
k2Lc

X
x2Dk

cðx;rÞ½f ðrxÞ � f ðrÞ�: ð3:3Þ

For x 2 Dk we have

F ðrxÞðkÞ ¼
X
y2Dk

rxðyÞ ¼ gðkÞ þ 1 when rðxÞ ¼ 0;
gðkÞ � 1 when rðxÞ ¼ 1;

�

thus, we obtain from (3.2) that

f ðrxÞ � f ðrÞ ¼ ð1� rðxÞÞ½gðg þ dkÞ � gðgÞ� þ rðxÞ½gðg � dkÞ � gðgÞ�; x 2 Dk:

Here dk 2 Hm;q is the configuration with a single particle at the site k 2 Lc. Replacing in (3.3) we have for

any test function g 2 L1ðHm;q;RÞ:

d

dt
EgðgÞ ¼ d

dt
Ef ðrÞ ¼ E

X
x2L

cðx; rÞ½f ðrxÞ � f ðrÞ�

¼ E
X
k2Lc

X
x2Dk

cðx; rÞð1� rðxÞÞ½gðg þ dkÞ � gðgÞ� þ cðx; rÞrðxÞ½gðg � dkÞ � gðgÞ�: ð3:4Þ

Using (2.6), and that rðxÞ 2 f0; 1g, we obtainX
x2Dk

cðx; rÞð1� rðxÞÞ ¼
X
x2Dk

d0ð1� rðxÞÞ ¼ d0ðq� gðkÞÞ ð3:5Þ

and X
x2Dk

cðx; rÞrðxÞ ¼
X
x2Dk

d0rðxÞ exp½�bðU0 þ UðxÞÞ�: ð3:6Þ

Relation (3.5) clearly depends only on g and according to (3.4) yields the rate with which the value gðkÞ is
increased by 1, i.e., the adsorption of a single particle occurs in the coarse cell Dk. Thus we define the coarse-

grained adsorption rate

caðk; gÞ :¼ d0½q� gðkÞ�:

Similarly (3.6) corresponds to the rate with which the value gðkÞ is decreased by 1, i.e., the desorption of
a single particle occurs in the coarse cell Dk. If, as in (3.5), we can write (3.6) only as a function cdðk; gÞ of
the coarse-grained variable g (without explicit dependence on r), then the right-hand side of (3.4) will yield
a coarse-grained Markov process generator of birth–death type for the process g:

LcgðgÞ ¼
X
k2Lc

caðk; gÞ½gðg þ dkÞ � gðgÞ� þ cdðk; gÞ½gðg � dkÞ � gðgÞ�: ð3:7Þ
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Thus the resulting coarse-grained process g will be a Markov process and will provide a stochastic meso-
scopic model for the microscopic adsorption/desorption mechanisms. Below we concentrate on the last

missing piece in this attempt which is the (approximate) derivation from (3.6) of a mesoscopic desorption

rate cdðk; gÞ.

3.1. Coarse-grained potential and desorption rate

We recall from (2.5) that UðxÞ ¼
P

z 6¼x;z2L Jðx� zÞrðzÞ � h. For a fixed x 2 L, we have that x 2 Dl for
some l 2 Lc and we rewrite the summation in the formula for U as

X
z 6¼x;z2L

Jðx� zÞrðzÞ ¼
X
k2Lc

X
z 6¼x;z2Dk

Jðx� zÞrðzÞ

¼
X

z 6¼x;z2Dl

Jðx� zÞrðzÞ þ
X

k 6¼l;k2Lc

X
z2Dk

Jðx� zÞrðzÞ

:¼ Iþ II:

The term II consists of the long range interactions of x 2 Dl with particles in other coarse cells Dk, k 6¼ l,
while the term I gathers interactions within the cell Dl.

We now define the coarse-grained potential by including all contributions of pairwise microscopic

interactions between coarse cells and within the same coarse cell, averaged over the subregion of T1 � T1
corresponding to Dl � Dk, denoted by a slight abuse of notation also as Dl � Dk. More specifically we

set

�JJðk; lÞ ¼ m2
Z Z

Dl�Dk
Jðr � sÞdrds; ð3:8Þ

where the area of Dl � Dk is equal to 1=m2. Similarly we define

�VV ðk; lÞ ¼ m2
Z Z

Dl�Dk
V

N jr � sj
2Lþ 1

� �
drds:

Since the potential J is given by Jðx� yÞ ¼ ð1=ð2Lþ 1ÞÞV ðNðx� yÞ=2Lþ 1Þ, we have

Jðx� yÞ ¼ Jðx0 � y 0Þ þ 1

2Lþ 1O
N

ð2Lþ 1Þm

� �
¼ Jðx0 � y 0Þ þ 1

2Lþ 1O
q

2Lþ 1

� �
; ð3:9Þ

when x; x0 2 Dl; y; y 0 2 Dk, k 6¼ l. Finally we have

Jðx� yÞ ¼ �JJðk; lÞ þ 1

2Lþ 1O
q

2Lþ 1

� �
; x 2 Dl; y 2 Dk; ð3:10Þ

where

O
q

2Lþ 1

� �
6

q
2Lþ 1 sup

x2Dl
y2Dk

ðjoxV j þ joyV jÞ; k 6¼ l:
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Now using (3.10) we can rewrite II in terms of the coarse-grained variable

II ¼
X
k2Lc
k 6¼l

X
z2Dkjz�xj6L=N

Jðx� zÞrðzÞ ¼
X
k2Lc
k 6¼l

�JJðk; lÞ
�

þ 1

2Lþ 1O
q

2Lþ 1

� �� X
z2Dkjz�xj6L=N

rðzÞ

¼
X
k2Lc
k 6¼l

�JJðk; lÞgðkÞ þ 1

2Lþ 1O
q

2Lþ 1

� � X
z2L
jz�xj6 L=N

rðzÞ ¼
X
k2Lc
k 6¼l

�JJðl; kÞgðkÞ þO q
2Lþ 1

� �
:

Improved error estimates can be obtained in a straightfoward manner if V decays far from the origin (or J
decays away from the diagonal), hence the interactions between Dk and Dl will accordingly decay.

If the potential V is smooth in R, then the short range interactions included in term I can also be treated
similarly: for x 2 Dl,

I ¼
X

z 6¼x;z2Dl

Jðx� zÞrðzÞ ¼ �JJð0; 0Þ
X

z 6¼x;z2Dl

rðzÞ þ 1

2Lþ 1O
q

2Lþ 1

� �

¼ �JJð0; 0Þ gðlÞð � rðxÞÞ þ 1

2Lþ 1O
q

2Lþ 1

� �
:

On the other hand we can also handle potentials with a singularity at the origin, provided the following

condition is satisfied:Z Z
T1�T1

jorJðr � sÞjdrds < 1:

In this case we have the L1 bound in Dl � Dl

jJðx� yÞ � �JJð0; 0Þj6 2m
Z Z

Dl�Dl
jorJðr � sÞjdrds;

where the right-hand side clearly decays as m! 1, since the area of Dl � Dl is equal to 1=m2.
Next we complete the derivation of the coarse-grained process, where the errors used are the ones de-

rived in the case of the smooth potential only; singular potentials are handled similarly. We can now write
for x 2 Dl,

UðxÞ ¼
X
k2Lc
k 6¼l

�JJðl; kÞgðkÞ þ �JJð0; 0Þ gðlÞð � rðxÞÞ � hþO q
2Lþ 1

� �
:

Consequently (3.6) becomesX
x2Dk

d0rðxÞ exp ½ � bðU0 þ UðxÞÞ� ¼ exp
�
� b U0

�
þ �UUðkÞ þO q

2Lþ 1

� ��	X
x2Dk

c0rðxÞ

¼ exp O
q

2Lþ 1

� �� 	
d0gðkÞ exp

h
� b U0
�

þ �UUðkÞ
�i

; ð3:11Þ

where we defined

�UUðlÞ ¼
X
k2Lc
k 6¼l

�JJðl; kÞgðkÞ þ �JJð0; 0Þ gðlÞð � 1Þ � h: ð3:12Þ
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Note also that

UðxÞ ¼ �UUðlÞ þO q
2Lþ 1

� �
: ð3:13Þ

By momentarily disregarding the Oðq=2Lþ 1Þ term in (3.11) we now define

cdðk; gÞ ¼ d0gðkÞ exp
h
� b U0
�

þ �UUðkÞ
�i

: ð3:14Þ

Using (3.5) and (3.11), relation (3.4) becomes

d

dt
EgðgÞ ¼ E

X
k2Lc

caðk; gÞ gðg½ þ dkÞ � gðgÞ� þ exp Oðq=2L½ þ 1Þ�cdðk; gÞ gðg½ � dkÞ � gðgÞ� ð3:15Þ

for any test function g 2 L1ðHm;q;RÞ.
Relation (3.15) suggests that at least, when 2Lþ 1� q, the coarse-grained variable g is ‘‘approximately’’

a Markov process with generator given by the right-hand side of (3.15). We can now define a corresponding

new process g from (3.15) by disregarding the Oðq=2Lþ 1Þ term. Note the similarity of the calculations in
(3.8)–(3.12) to the block spin renormalization procedure [9].

In other ad hoc models in the literature [10,17], the interactions within the same cell are ignored; in fact,

the term I is lower order for 2Lþ 1� q, but this is not true any more if the potential radius L is relatively
short, and/or the interactions are very strong. Here we included same cell interactions so that when we

coarse grain beyond the interaction radius L, and thus kill all cross-cell interactions, to still obtain the
global mean field (MF) theory. Indeed we now obtain a whole ‘‘hierarchy’’ of MC models from nearest
neighbor to mean field where the latter does not include interactions but includes noise, unlike the usual

ODE mean field theories. The proper addition of interactions within the cell in the coarse model is derived

from microscopics; in the end the dynamics still obey detailed balance, as established in the next section,

even after adding the interactions within the cell. In Section 5, we numerically show that these fluctuations

are particularly important close to turning points.

3.2. The coarse-grained processes

We define the birth–death Markov process g on the configuration space

Hm;q ¼ f0; 1; . . . ; qgLc ;

where g ¼ fgðkÞ : k 2 Lcg and gðkÞ 2 f0; 1; . . . ; qg for the coarse cell Dk, k ¼ 1; . . . ;m. A typical configu-
ration g0 has the form

g0 ¼ k1; k2; . . . ; kmð Þ;

where ki 2 f0; 1; . . . ; qg. The generator of the process suggested by (3.15) is

LcgðgÞ ¼
X
k2Lc

caðk; gÞ gðg½ þ dkÞ � gðgÞ� þ cdðk; gÞ gðg½ � dkÞ � gðgÞ�: ð3:16Þ

The update rate with which the value gðkÞ is increased by 1, i.e., the adsorption rate of a single particle in
the coarse cell Dk is

caðk; gÞ :¼ d0 q½ � gðkÞ�: ð3:17Þ
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Similarly the rate with which the value gðkÞ is decreased by 1, i.e., the desorption rate of a single particle in
the coarse cell Dk is

cdðk; gÞ ¼ d0gðkÞ exp
h
� b U0
�

þ �UUðkÞ
�i

; ð3:18Þ

where �UU is defined in (3.12). Then for any test function g 2 L1ðHm;q;RÞ we have

d

dt
EgðgÞ ¼ E

X
k2Lc

caðk; gÞ gðg½ þ dkÞ � gðgÞ� þ cdðk; gÞ gðg½ � dkÞ � gðgÞ�: ð3:19Þ

3.3. Wavelet-based coarse grainings

Wavelets with M vanishing moments can be used in the construction of the coarse-grained potential
instead of the simple averaging procedure in (3.8). More specifically we consider the compactly supported

pair of functions / and w defined on ð�1;1Þ with the properties [2],Z
/ðxÞdx ¼ 1;

Z
wðxÞxl dx ¼ 0; l ¼ 0; 1; . . . ;M � 1;

where

/ðxÞ ¼
ffiffiffi
2

p X2M�1

k¼0
hkþ1/ð2x� kÞ;

wðxÞ ¼
ffiffiffi
2

p X2M�1

k¼0
gkþ1/ð2x� kÞ

and gk ¼ ð�1Þk�1h2M�k�1; k ¼ 1; . . . ; 2M . Assuming that m ¼ 2j, we define corresponding wavelets as the
dilations and translations of / and w,

/m
k ðxÞ :¼ m/ðmx� k þ 1Þ; wm

k ðxÞ :¼ mwðmx� k þ 1Þ; k ¼ 1; 2; . . .

When /ðxÞ ¼ v½0;1Þ and w ¼ v½0;:5Þ � v½:5;1Þ we obtain the usual Haar wavelets.

We can now define the coarse-grained potential as

�JJðk; lÞ ¼
Z Z

Jðr � sÞ/m
k ðrÞ/

m
l ðsÞdrds: ð3:20Þ

In the case of the Haar basis, (3.20) is precisely the coarse-grained potential defined in (3.8). Note that the

multiplying factor m in the definition of /m
k ;w

m
k , instead of the usual m

1=2 guaranteeing the orthonormality

of wm
k in the standard wavelet expansions, is necessary here to ensure quadrature formulae with errors such

as (3.10) for the coarse-grained potentials (3.20).

By using the wavelet-based definition (3.20) we gain some notable advantages over (3.8). First the in-

tegrals (3.20) can be calculated by the method proposed in [1] to 2M order of accuracy by solving the
difference equations satisfied exactly by the matrix ð�JJðk; lÞÞkl, as well as using the vanishing moment
properties of the autocorrelation function of /. Secondly by using the non-standard form (see [2]) we can
systematically compress ð�JJðk; lÞÞkl by discarding interactions when k and l are sufficiently apart, i.e., restrict
the bandwidth at any given coarse resolution 1=m.
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4. Detailed balance and large deviations principle

Here we study dynamic properties of the coarse-grained process and connect with microscopic and

mesoscopic theories.

4.1. Invariant measures and detailed balance

Here we derive the invariant measure for the coarse-grained process and in particular we show it satisfies

the detailed balance condition similarly to the true microscopic dynamics frtg.
First we define the new coarse-grained Hamiltonian corresponding to (3.19). We rewrite (2.1) using

(3.13) and the error estimates in Section 3.1 for a constant external field h, as

HðrÞ ¼ � 1
2

X
l2Lc

X
x2Dl

X
k2Lc
k 6¼l

�JJðk; lÞgðkÞ þ �JJð0; 0Þ gðlÞ � 1ð Þ

0
BB@

1
CCArðxÞ þ

X
k2Lc

hgðkÞ þOðNq=2Lþ 1Þ

¼ � 1
2

X
l2Lc

X
k2Lc
k 6¼l

�JJðk; lÞgðkÞgðlÞ �
�JJð0; 0Þ
2

X
l2Lc

gðlÞ gðlÞð � 1Þ þ
X
k2Lc

hgðkÞ þOðNq=2Lþ 1Þ:

We now define the coarse-grained Hamiltonian

�HHðgÞ ¼ � 1
2

X
l2Lc

X
k2Lck 6¼l

�JJðk; lÞgðkÞgðlÞ �
�JJð0; 0Þ
2

X
l2Lc

gðlÞ gðlÞð � 1Þ þ
X
k2Lc

hgðkÞ: ð4:1Þ

Note that

HðrÞ ¼ �HHðF ðrÞÞ þOðNq=2Lþ 1Þ;

where we have defined F ðrÞðkÞ ¼
P

y2Dk rðyÞ ¼ gðkÞ. In the usual mean field scaling the Hamiltonian is
further rescaled by 1=N [6,3], in which case the error above reduces to Oðq=2Lþ 1Þ.
We now consider a product binomial distribution as the prior distribution on the configuration space

Hm;q, i.e.

Pm;qðdgÞ ¼
Ym
k¼1

qqðdgðkÞÞ; ð4:2Þ

where

qqðgðkÞ ¼ kÞ ¼ q!
k!ðq� kÞ!

1

2

� �q

: ð4:3Þ

This prior arises naturally from the microscopic prior distribution in (2.3) by including q independent sites.
We define the canonical Gibbs measure on Hm;q, as

lm;q;bðdgÞ ¼
1

Zm;q;b
expð�b �HHðgÞÞPm;qðdgÞ; ð4:4Þ
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where Zm;q;b denotes the corresponding partition function. We readily see that if q ¼ 1, the measure reduces
to (2.2). For brevity we use the following notation: for a fixed g0 2 Hm;q, we write

lm;q;bðfg : g ¼ g0gÞ :¼ lm;q;bðg0Þ;

Pm;qðfg : g ¼ g0gÞ :¼ Pm;qðg0Þ;

qqðgðkÞ ¼ g0ðkÞÞ :¼ qqðg0ðkÞÞ:

Next we show that the coarse-grained process satisfies the detailed balance condition with respect to the

measure lm;q;b. The detailed balance for the process (3.19) would read

caðk; gÞlm;q;bðgÞ ¼ cdðk; g þ dkÞlm;q;bðg þ dkÞ ð4:5Þ

and

cdðk; gÞlm;q;bðgÞ ¼ caðk; g � dkÞlm;q;bðg � dkÞ: ð4:6Þ

First note that

�HHðg þ dkÞ � �HHðgÞ ¼ � �UUðkÞ ð4:7Þ

and

�HHðg � dkÞ � �HHðgÞ ¼ �UUðkÞ: ð4:8Þ

For simplicity in the exposition below we assume that h ¼ 0 and verify (4.5) only. Using (4.7) and the
definitions of the rates (3.17), (3.18) we have

caðk; gÞlm;q;bðgÞ � cdðk; g þ dkÞlm;q;bðg þ dkÞ ¼ ðq� gðkÞÞ exp
�
� b �HHðgÞ

�
Pm;qðgÞ � ðgðkÞ þ 1Þ

� exp
�
� b �HHðg
�

þ dkÞ þ �UUðkÞ
��
Pm;qðg þ dkÞ

¼ exp
�
� b �HHðgÞ

�
ðq
�

� gðkÞÞPm;qðgÞ � ðgðkÞ

þ 1ÞPm;qðg þ dkÞ
�

¼ exp
�
� b �HHðgÞ

� Ym
l¼1l6¼k

qqðgðlÞÞ ðq
�

� gðkÞÞqqðgðkÞÞ

� ðgðkÞ þ 1ÞqqðgðkÞ þ 1Þ
�
: ð4:9Þ

However, from (4.3) we have that ðq� kÞqqðkÞ ¼ ðk þ 1Þqqðk þ 1Þ for all integers 06 k6 q� 1. Thus the
last curly bracket in (4.9) is identically zero and detailed balance follows.

4.2. Large scale asymptotics of the invariant measure

We derive an asymptotic formula for the invariant measure (4.4) as q! 1, in the spirit of calculations
typically carried out as intermediate steps in the theory of Large Deviations [5].

First we recall Sterling�s formula:

q! ¼
ffiffiffiffiffiffiffiffi
2pq

p
e�qqqð1þ RðqÞÞ; ð4:10Þ
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where 1þ RðqÞ ¼ expðhq=12qÞ and 0 < hq < 1. A standard calculation using (4.10) in (4.3) in the evaluation
of all factorials yields (see for instance page 57 in [22]):

qqðgðkÞ ¼ kÞ ¼ 1þ �ðq; k; q� kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pqckð1� ckÞ

p exp ð� qrðckÞÞ

or

qqðgðkÞ ¼ kÞ ¼ 1ð þ �ðq; k; q� kÞÞ exp
�
� q rðckÞ
�

þ oqð1Þ
��
; ð4:11Þ

where

1þ �ðq; k; q� kÞ ¼ 1þ RðqÞ
ð1þ RðkÞÞð1þ Rðq� kÞÞ :

We have also defined the average coverage at k 2 Lc,

ck ¼
k
q

and

rðcÞ ¼ c log cþ ð1� cÞ logð1� cÞ:

Using (4.11) we obtain the asymptotic formula for the measure (4.4). If g0 ¼ ðk1; k2; . . . ; kmÞ;

lm;q;bðg0Þ ¼
Ym
k¼1

1þ �ðq; kk; q� kkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pqckð1� ckÞ

p 1

Zm;q;b
exp
�
� qmEm;qðg0Þ

�
;

which can be written as

lm;q;bðg0Þ ¼
1

Zm;q;b
exp
�
� qm Em;qðg0Þ

�
þ dðq;m; g0Þ

��
; ð4:12Þ

where

Em;qðg0Þ ¼ � b
2m�LL

X
l

X
k 6¼l

�VV ðk; lÞckcl

(
þ �VV ð0; 0Þcl cl

�
� 1
q

�)
þ bh
m

X
k2Lc

ck þ
1

m

X
k2Lc

rðckÞ

or alternatively,

Em;qðg0Þ ¼ � b

2m�LL

X
l

X
k

�VV ðk; lÞckcl þ
bh
m

X
k2Lc

ck þ
1

m

X
k2Lc

rðckÞ þ oqð1Þ: ð4:13Þ

Here �LL ¼ 2Lþ 1=q is the coarse-grained potential length of �VV . Furthermore,

dðq;m; g0Þ ¼
1

qm

X
k

log 2pqckð1ð
�

� ckÞÞ þ
hq�kk

12qð1� ckÞ
þ hkk

12qck

�
� hq
12q2

:

We notice that for fixed m, dðq;m; g0Þ ¼ oqð1Þ as q ! 1. Also observe that after some algebra (4.13) yields

Em;qðg0Þ ¼
b

4m�LL

X
l

X
k

�VV ðk; lÞ½ck � cl�2 þ
bh
m

X
k2Lc

ck þ
1

m

X
k2Lc

½rðckÞ � b
V0
2
c2k � þ oqð1Þ; ð4:14Þ
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where

V0 ¼
1
�LL

X
l

�VV ðk; lÞ:

Furthermore if �VV is long-ranged (i.e. �LL ¼ m, N ¼ 2Lþ 1), (4.13) is merely a discrete version of the
Lyapunov functional of the corresponding mesoscopic equation (4.17) (see Section 4.3 and [13]),

E½c� ¼ � b
2

Z Z
V ðy � y0ÞcðyÞcðy 0Þdy dy 0 þ bh

Z
cðyÞdy þ

Z
rðcðyÞÞdy: ð4:15Þ

On the other hand if �VV ¼ �VV ðk; lÞ is a nearest neighbor potential (i.e., �LL ¼ 1) then (4.14) yields a discrete
version of the well-known Ginzburg–Landau energy

E½c� ¼ b
4m2

Z
V0jrcj2 þ bh

Z
cðyÞdy þ

Z
rðcðyÞÞ � b

2
V0c2ðyÞdy: ð4:16Þ

Remarks

1. The implication of (4.12) is that for large q and m fixed, the most probable configurations are the min-
imizers of the discrete energy (4.13). We recall that the minimizers of the continuous version (4.15) are

standing waves, which for a specific choice of J are known explicitely [8].
2. Using Laplace�s principle [5] we may easily obtain Large Deviations results as q! 1 and as
q;m! 1. In the former limit the rate is given in terms of (4.13) and in the latter in terms of
(4.15). In all these derivations we need to guarantee that the ‘‘error’’ term d in (4.12) vanishes as
we pass to the limit. The full WKB expansion of the Gibbs measure can also be obtained easily from

(4.12), in view of the explicit formula for d. Although we do not state explicitly either here or in Sec-
tion 4.3 any theorems, it is straightforward to adapt our arguments, following the formalism of Large

Deviations, into mathematically rigorous proofs.

4.3. Comparison of microscopic and coarse-grained processes

First we point out that the coarse-grained and the microscopic processes have the same deterministic

mesoscopic limits. Indeed, for gðgÞ ¼ q�1gðkÞ ¼ �ggðkÞ in (3.19) we can obtain using martingale arguments
that in the q;m ! 1 limit the same mesoscopic equation for Arrhenius dynamics as in the standard der-
ivations from the microscopic process r, [13]:

ct ¼ d0 1½ � c� expð � bhÞc exp ð � bJ � cÞ�; ð4:17Þ

where c is the limit of the normalized average E�ggtðkÞ. Thus the processes r and g share the same deter-
ministic mesoscopic limit. Details of the asymptotic limit will appear elsewhere.

In addition, we would like to make a comparison of the probability distribution functions (PDF) for the

coarse-grained and microscopic processes. Here we discuss only the case of the corresponding invariant

measures (2.2) and (4.4) and return to the issue for the full non-equilibrium setting in a future publication.

First, it is immediately obvious that the Gibbs measures (2.2) and (4.4) are identical when the coarse-
graining parameter q is equal to one. Next we examine their relation in the asymptotic limits m ! 1,
q ! 1. Recall that in Section 3 we defined the mapping F : R 7!Hm;q, where

F ðrÞðkÞ ¼
X
y2Dk

rðyÞ ¼ gðkÞ; k ¼ 1; . . . ;m:
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Following along the lines of the calculations in Section 4.2 and using the simple probabilistic fact that

PN fr : F ðrÞ ¼ g0gð Þ ¼ Pm;qðg0Þ, we have:

lL;b fr : F ðrÞð ¼ g0gÞ ¼
1

ZL;b

Z
fr:F ðrÞ¼g0g

exp ð� bHðrÞÞPN ðdrÞ

¼ 1

ZL;b
exp
�
� b �HHðg0Þ
�

þOðNq=2Lþ 1Þ
��
PN fr : F ðrÞð ¼ g0gÞ

¼ 1

ZL;b
exp
�
� mq Em;qðg0Þ

�
þ dðq;m; g0Þ þOðq=2Lþ 1Þ

��
¼ 1

ZL;b
exp
�
� mq Em;qðg0Þ

�
þ dðq;m; g0Þ þOð1=�LLÞ

��
: ð4:18Þ

Consequently, for fixed m and �LL, and q! 1, the discrete energy (4.13) corrected by the term Oð1=�LLÞ is the
rate functional of the underlying Large Deviation principle. In the consecutive q;m! 1 (hence �LL ! 1)
the rate functionals of lm;q;b and lL;b are identical, yielding asymptotically identical PDFs for the stationary

measures of the microscopic and coarse-grained processes. In fact, in the case of long range interactions

(N ¼ 2Lþ 1) we have that (4.15) is the rate functional of both processes. We note here that this last result
was first proved for the microscopic Gibbs states in [6]. Contrasting relations (4.12) and (4.18) allow us, at
least at equilibrium, to rationally design the coarse-grained Monte Carlo simulation, i.e., decide how to

select m and q, given a potential J and a desired accuracy. This comparison of fluctuations in microscopic
and coarse-grained processes is also numerically demonstrated in a non-equilibrium setting with an illus-

trative example in Section 5.

5. Coarse-grained Monte Carlo simulations

5.1. Implementation of kinetic MC simulations

Given a microscopic potential, the coarse-grained potential between interacting coarse cells is first

computed only once and saved in a vector. This makes the computational demand of coarse-grained MC

simulations per event the same as that of microscopic MC simulations. More specifically we implement

(3.8) in the most straightforward manner as

�JJðk; lÞ ¼ 1

q2
X
x2Dk

X
y2Dl

Jðx� yÞ ¼ 1

2Lþ 1
�VV ðk; lÞ; k 6¼ l; ð5:1Þ

where we define

�VV ðk; lÞ ¼ 1

q2
X
x2Dk

X
y2Dl

V
N jx� yj
2Lþ 1

� �
; k 6¼ l:

Here we have a total of q2ðx; yÞ-pairs corresponding to q2 pairwise interactions. Likewise, within the same
cell we have qðq� 1Þ=2 distinct pairs of interactions; for all l ¼ 1; 2; . . . ;m,

�JJðl; lÞ ¼ �JJð0; 0Þ ¼ 1

qðq� 1Þ
X
x2Dl

X
y2Dl
y 6¼x

Jðx� yÞ: ð5:2Þ
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Similarly we set

�VV ðl; lÞ ¼ �VV ð0; 0Þ ¼ 1

qðq� 1Þ
X
x2Dl

X
y2Dl
y 6¼x

V
N jx� yj
2Lþ 1

� �
:

With the exception for the aforementioned interactions within a coarse cell, which are not a feature of

microscopic MC simulations, coarse-grained MC simulations are implemented in the same manner. The
primary differences lie in the occupation function gðkÞ that varies from 0 to q instead of having two values
of 0 and 1, and in computing the Hamiltonian where we have to include the term describing the interactions

within the cell. As a result, the transition probabilities and average time step (the inverse of the total

transition probability per unit time) are also scaled appropriately. The updating mechanism either adds or

subtracts a particle at each coarse cell in the case of adsorption/desorption, or moves a particle between

adjacent coarse cells in the case of surface diffusion (see Appendix A). However, for both mechanisms the

maximum number of particles at each coarse cell is q and the minimum is zero. For instance, this exclusion
principle is enforced in (A.13) by the prefactor gðkÞðq� gðlÞÞ. The computational implication of this is that
physically unrealistic situations (e.g., fraction of occupied sites greater than one or less than zero) never

arise.

We recall from Section 2.1 that L denotes the potential radius of the microscopic potential J (in
microscopic units). Then �LL ¼ 2Lþ 1=q is the total range of interaction of the coarse-grained potential
�JJ . The system modeled is a 1D surface (interface) in equilibrium with a fluid phase, as depicted in

the inset of Fig. 1. Atoms adsorb from the fluid onto the interface and can desorb back, depending

on temperature and specifics of interactions between atoms. We denote the adsorption and desorp-

tion constants with ka and kd, respectively, as well as P the constant partial pressure in the gas phase.
These parameters enter in the MC rates (2.6) as follows: kd ¼ d0, kaP ¼ expð�bhÞ, where h is the external
field in (2.5). The expected value of gðkÞ normalized by q is called the coverage u. For equilibrium
systems with periodic boundary conditions, the coverage reported below is the ensemble (spatial)

average.

The algorithm we have implemented belongs to the general class of continuous time MC (CTMC) or

often referred to as kinetic MC simulations. In these algorithms, the transition probabilities are computed a

priori and using one or more random numbers, a microscopic process is selected and executed. As a result,

there are no null events in which no action takes place. Since the probability of having successful events is
one, these algorithms can be superior to null event algorithms. Several of these algorithms along with their

performance have recently been discussed in [21]. Here we employ a global update scheme, i.e., at each MC

event a site is randomly chosen and the lattice is scanned until the selected site is identified. In a typical MC

simulation, the following steps are carried out: (1) calculation of the transition probabilities per unit time of

each site for the entire lattice; (2) selection of a microscopic process, either adsorption or desorption, and

subsequently of a specific site using a random number and the transition probabilities and (3) execution of

the event at the selected site. Since the time step is inversely proportional to the number of cells, in order to

conduct simulations of the same real time or MC steps (MCS), the lattice is scanned once on the average
(we define this as 1 MCS).

Finally we remark that a local update algorithm could also be implemented. In local update algorithms,

sites with the same transition probability are assigned to the same class or set of sites. Furthermore, only the

sites whose probabilities are affected after the execution of an event are updated, i.e., within a radius of L.
By using lists of neighbors and saving their coordinates, one can directly identify the selected site and

eliminate scanning of the lattice, resulting in significant computational savings in many cases [21]. Imple-

mentation of local update algorithms is however tedious and memory can become a serious issue, especially

for long-range potentials, as the number of needed classes increases rapidly. For these reasons, we have
employed the simpler global update algorithm. Note though that the coarse-grained MC methods proposed
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here can effectively shorten the microscopic potential length, enabling in some cases the use of local update

algorithms even for long-range potentials.

For most of the simulations reported below, a microscopic piecewise constant potential is employed to

describe lateral adsorbate–adsorbate interactions. It is defined in terms of (2.4) for V ðxÞ ¼ V ðrÞ, x 2 R,

jxj ¼ r and

V ðrÞ ¼ J0v½0;1�ðrÞ; rP 0;

where v½0;1�ðrÞ ¼ 1, if 06 r6 1, and v½0;1�ðrÞ ¼ 0, otherwise. The convention used below is that J0 is positive
or negative, for attractive or repulsive interactions, respectively. The coarse-grained potential �JJ is defined as
in (5.1).

5.2. Isotherms

It is known from statistical mechanics that no hysteresis exists for first-nearest neighbor attractive in-
teractions in 1D systems [12]. On the other hand, for infinitely long attractive interactions, hysteresis exists

according to the global mean field (MF) theory for bJ0 > 4, where J0 is the zeroth moment of the potential,
[10]. Therefore, it is important to understand at what potential lengths hysteresis develops in 1D simula-

tions. Furthermore, we would like to investigate whether very short-range coarse-grained MC simulations

give hysteresis for relatively long microscopic potentials. This constitutes a strict test that coarse-graining

works well for metastability and hysteresis.

Isotherms are computed similarly to natural parameter continuation, i.e., we trace the coverage vs.

pressure (called an isotherm), first upon increasing kaP=kd from low values and then on decreasing it from
high values. For each calculation at a new pressure the final state from the previous pressure is used as an

initial configuration. Fig. 1 compares the global MF isotherm with those obtained from microscopic MC

simulations for sufficiently strong interactions (bJ0 ¼ 6) and various potential lengths L. For the micro-
scopic MC simulations, no hysteresis exists even for L ¼ 10. Hysteresis is observed though for sufficiently
long potentials such as L ¼ 20 and L ¼ 30. The hysteresis width increases with increasing potential length
towards the global MF limit, as expected.

Next, gross features of microscopic (q ¼ 1) and coarse-grained (q > 1) MC simulation data are com-
pared in Fig. 2 for a fixed potential length and various coarse-graining levels. First we notice that the
coverage predicted from the coarse-grained MC simulation is in reasonably good agreement with that of

the microscopic MC simulation along each branch of the isotherm. However, small quantitative differences

are observed. We discuss these quantitative errors and their evolution with increasing q in detail below.

Second we remark that, as the asymptotics (3.13) indicate, for fairly long potentials (e.g., L ¼ 30) the
coarse-grained MC predicts hysteresis in good agreement with the microscopic MC simulation. This is even

true when the asymptotics (3.13) are not necessarily true, for instance in first nearest neighbor coarse-

grained interactions (q ¼ 2Lþ 1). These simulations demonstrate that despite the fact that the coarse-
grained MC procedure results in short-range interactions, it correctly predicts hysteresis in 1D for relatively
long potentials. Therefore, the coarse-grained MC simulation provides the correct qualitative behavior.

The small differences in pressure where the transition from low to high coverages occurs upon increasing

kaP=kd are due in part to the stochastic nature of these simulations associated with metastability in hys-
teresis loops and in part due to the approximation of the coarse-grained potential and energies compared to

the microscopic MC simulation. It is also noticed that the larger q is, the more global MF-like behavior is
observed. As the level of coarse-graining increases, more microscopic cells are averaged within a coarse cell,

i.e., each cell behaves more like a MF entity and the interactions between coarse cells decrease in magnitude

and probably in length. For sufficiently large coarse-grainings, one would expect that the global MF limit is
recovered, except for fluctuations, as also discussed at the end of Section 3.1. Fig. 2 shows an example for
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q ¼ 1200 where interactions are limited to almost within each cell. Indeed the coarse MC isotherm (squares)
almost completely coincides with the MF isotherm. However, slightly premature transitions from one

branch to the other are still observed caused by the noise inherent to the stochastic process. Such transitions

are observed only in very long MC simulations and take considerable number of MC steps (> 106) to
transition from one branch to the other, a situation reminiscent of critical slow down of continuum PDEs.

For example, shorter runs of 104 do not exhibit such premature transitions.

The above simulations were done for moderately long potentials. Fig. 3 shows isotherms for very short-

range potentials (L ¼ 1). In contrast to the multi-valued global MF isotherm, the microscopic MC isotherm
(circles connected with line) is single-valued, as expected from statistical mechanics. For such short-ranged

potentials, significant deviations are observed for coarse-grainings varying from q ¼ 2 to q ¼ 24, but the
corresponding isotherms are still single-valued. For q ¼ 24 the isotherm is quite steep, and for larger

coarse-grainings, such as q ¼ 100 and q ¼ 1000, the MF character within each coarse cell dominates and
multiple-valued isotherms develop as indicated in Fig. 3. Note though that despite the small value of
�LL ¼ 2Lþ 1=q � 1, fluctuations can result in premature transitions from one branch to the other near

turning points, a feature which is absent from deterministic ODEs. The situation about the effect of fluc-

tuations is analogous to one seen in Fig. 2. However, similarly to the mean field theory, coarse-graining

may lead to qualitatively wrong results (in terms of multiplicity) for short potentials in 1D.

5.3. Transients and noise of coarse-grained MC simulations

The above simulations provide ensemble averages of equilibrium states. There are several interesting

facets to explore in transients such as the correctness of dynamics towards equilibrium and the level of

noise. Single MC transient runs were carried out with periodic boundary conditions for three cases: no

interactions (Langmuir case), attractive interactions (highest coverage) and repulsive interactions (lowest
coverage). In the case of interactions, a piecewise constant potential of L ¼ 10 has been used. Results are

Fig. 2. Comparison of coarse-grained and microscopic MC simulation results for L ¼ 30 and different levels of coarse-graining q for a
total number of cells N ¼ mq ¼ 240 (for q > 30, m ¼ 20 has been used). The global MF isotherm is also depicted as a thick solid line.
For the largest coarse-grainings, long simulations of up to 106 MCS have been carried out near turning points. Other parameters are

the same as in Fig. 1.
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depicted in Fig. 4. The solid lines correspond to the microscopic MC and the dashed ones to coarse-grained

MC with m ¼ 200 and q ¼ 10. The smooth dashed line is the Langmuir transient corresponding to the
global MF theory in the absence of interactions (an analytic solution). The same seed of the random

generator has been used for all runs displayed in Fig. 4.

Fig. 4. Results of transient simulations from microscopic (q ¼ 1) MC (solid, noisy lines) and coarse-grained (q ¼ 10) MC (dotted,
noisy lines) for an attractive, a repulsive, and a non-interacting case. The smooth dashed line is the analytic Langmuir result for J0 ¼ 0.
The other parameters are: kaP ¼ kd ¼ 1;m ¼ 200;L ¼ 10.

Fig. 3. Comparison of global MF, microscopic MC simulation, and coarse-grained MC simulation results for short-range potentials of

L ¼ 1 and different levels of coarse-graining q for a total number of cells N ¼ mq ¼ 240 (for q > 30, m ¼ 20 has been used). The rest of
the parameters are the same as in Fig. 1. For the largest coarse-grainings, long simulations of up to 106 MCS have been carried out near

turning points.
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The model responses are noisy, as expected from single MC runs. The coarse-grained MC data follows

closely the microscopic MC data, i.e., the correct dynamics is captured. What is more astonishing is that the

noise of the two simulations is comparable (comparison of the noise is the reason we do not average

multiple trajectories to smooth these curves). Thus, the coarse-grained MC describes correctly the system

dynamics and exhibits the same noise as the microscopic MC simulation. This fact is not surprising, for

instance the Gibbs states of the coarse-grained process and the underlying microscopic process are as-

ymptotically identical in the case of long range interactions (2Lþ 1 ¼ N ), as the Large Deviation principles
for the coarse-grained and the microscopic processes coincide asymptotically (see (4.12) and (4.18)).

5.4. Errors caused by coarse-graining and effect of detailed balance

In order to examine the accuracy of the hierarchy of the coarse-grained MC simulations, beyond the
rigorous asymptotics presented in Sections 3 and 4, we have performed a number of simulations for various

values of the strength and length of the potential vs. cell size q. The results for piecewise constant potential
are depicted in Fig. 5. The top graph corresponds to repulsive interactions and the bottom one to attractive

interactions. In all simulations L is kept fixed (we study two cases, L ¼ 1 and L ¼ 16 as representative of
very short interactions and medium range interactions) while q gradually increases from the microscopic
q ¼ 1 limit to global mean field limit q � L.
Several interesting features are noticed. As q increases from the microscopic MC value of q ¼ 1 to large

values, the coverage does not always change monotonically (see L ¼ 1 case in Fig. 5(a) where the coverage
starts from 0.2855 at q ¼ 1) but it may exhibit maximum deviations from the microscopic MC value for
intermediate coarse grainings. For large q, mean field behavior is achieved within each cell and the global

Fig. 5. Errors of coarse-grained MC simulations vs. cell size q for repulsive interactions (a) and attractive interactions (b). The pa-
rameters used are: kaP ¼ kd ¼ 1 with ensemble averaging of 104 MCS after equilibration. Here m ¼ 256 is fixed as q increases (variable
N ). An example where no detailed balance is satisfied is also shown for repulsive interactions in panel (a).
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mean field value (0.2154 in Fig. 5(a)) is recovered, as expected. For short-range potentials, deviations of up

to 20% are noticed. These deviations are worst for short-range potentials and in most cases are non-

monotonic. Furthermore, the value of q where the maximum deviations are observed (for the non-

monotonic cases) changes with potential length.

The detailed balance principle has been used as a design rule of coarse-graining processes instead of

other intuitive approaches. In order to delineate the importance of this issue, we have also carried out

simulations where the short range interaction term in (4.1) gðlÞðgðlÞ � 1Þ has been deliberately replaced
with another ‘‘intuitive’’ term gðlÞ2, which however does not satisfy detailed balance. An example of the
effect of lack of detailed balance is depicted in Fig. 5(a). In this case large discrepancies are observed from

the results where detailed balance was enforced. Therefore, the correct derivation of the coarse Hamiltonian

from the microscopic one can be critical regarding numerical accuracy. This error is especially important

for relatively small q; in contrast, the two interaction terms tend to each other for large coarse grainings and
large coverages. Fig. 6 elucidates this point by comparing isotherms for a very short-range potential L ¼ 1.
For q ¼ 2 and low coverages, the deviations are significant. For larger q and larger coverages, the devia-
tions are less important.

5.5. Morse potentials

In addition to the piecewise constant potential used above, we have carried out a number of simulations

using the Morse potential, which is given by

V ðxÞ ¼ �A
�
� 2 exp x0 � x

b

� �
þ exp 2ðx0 � xÞ

b

� �	
; xP 0:

The potential is depicted in Fig. 7. Here A is the energy at x ¼ x0, x0 determines the distance to the minimum
of the potential (equilibrium point) and b is the curvature at the equilibrium point that mainly controls the

Fig. 6. Comparison of coarse-grained MC isotherms with and without detailed balance for short-range potentials of L ¼ 1 and dif-
ferent levels of coarse-grainings q for a total number of cells N ¼ mq ¼ 240. The global MF isotherm is also shown. The rest of the
parameters are the same as in Fig. 3.
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rate of decay of the potential with distance toward zero, i.e., the range of interactions. The effective range

(cutoff distance) of the Morse potential varies with parameters but it is chosen to be in the range of 20–40

neighbors. Note that for positive A, the interactions are attractive, whereas for negative A the interactions

are repulsive.

Fig. 7 depicts the potential vs. distance for three choices of parameters. Two choices correspond to

potentials where the minimum is at x0 ¼ 1 but the potential range differs by adjusting b. The last choice
corresponds to x0 ¼ 4 so that shorter-range interactions are repulsive and longer-range interactions are
attractive. The errors using these sets of parameters as a function of the cell size q are depicted in Fig.

8. The top and bottom graphs have been obtained for opposite values of the potential strength A. The

value of A has been adjusted in each of the three sets of parameters in order to maintain the absolute

value of the zeroth moment of the potential constant in all these simulations.

We notice that the relative errors are relatively small, i.e., the coarse graining idea works well even for

non-piecewise constant potentials. The overall behavior regarding the error is similar to the piecewise

constant potential, i.e., the maximum error occurs for intermediate values of q, and global MF behavior is

recovered for large q. Furthermore, the error is smaller for longer range potentials (see the case of
b ¼ 5; x0 ¼ 1, triangles). Finally, the error is bigger for mixed type potentials (see the case of b ¼ 1; x0 ¼ 4,
squares) where attractive and repulsive interactions are averaged within each cell.

5.6. CPU issues

Table 1 summarizes the number of function evaluations needed in each MC event. In this algorithm,

almost the entire CPU is spent on computing the transition probabilities. Among these calculations, the

Table 1

Operation counting

Step Number of multiplications and divisions Number of exponentiations

Calculation of transition probabilities mþ 2mþ 2L=ðqmÞ ¼ mð2L=qþ 3Þ m

Site selection O(m) to Oðlnm1=2Þ
Execution of event 1

We account for �if statements� as multiplications. Details depend on specifics of implementation.

Fig. 7. Morse potential as a function of distance for different parameter values indicated for each curve.
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exponentiation and the computation of the convolution (energy term) are the most demanding opera-

tions, depending on the potential length. The selection process has been reported to vary from
Oðlnðm1=2ÞÞ to OðmÞ when rare events are encountered. Given the function evaluations, the CPU per MC
step (keeping the same real time as the number of cells varies) is expected to vary as m2 and be pro-
portional to L.
For a given simulation length N and a fixed potential length L, as q increases, the number of

coarse cells m ¼ N=q decreases. Furthermore, the scale of the coarse-grained potential decreases as
q=2Lþ 1. Therefore, for sufficiently long potentials, the CPU time decreases with increasing q ap-

proximately as Oð1=q3Þ or Oðm3Þ. Fig. 9 shows this dependence. The CPU scales with m2:87. As an
example, using q ¼ 100, it results in approximately 1 million speedup of the code. Therefore, for
relatively long range potentials, significant enhancement in performance is obtained. For macroscopic

size systems in the millimeter length scale or larger, microscopic MC simulations are impractical on a

single processor. The computational savings of coarse-grained MC make it a suitable tool for such

scales.

Finally, note that the execution CPU time is the same for the microscopic and coarse-grained MC for

each event, as far as the same number of simulated cells m and the same potential length are employed.

The time step in KMC is inversely proportional to the number of simulated cells [21]. For the same

simulated length, N ¼ mq (in microscopic lattice units), as q increases the number of cells m decreases.
However, the transition probabilities per unit time increase proportionally with q. Therefore, the time
step is independent of coarse graining. This is an expected result, as individual atoms only keep moving

Fig. 8. Coverage vs. cell size q for net repulsive interactions (top) and attractive interactions (bottom) using the Morse potential and

three sets of parameters used in Fig. 8. Points are simulation results and lines just connect the points. The behavior is similar to the

piecewise constant potential. The largest errors occur for short-range, mixed type of potentials (squares) and the smallest ones for the

longer-range potentials (triangles). In these simulations, the strength, A, of the Morse potential at the minimum has been adjusted so

that the absolute value of the zeroth moment of the potential remains constant in all simulations.
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at each MC event in both simulations. Therefore coarse-graining presented here applies to length rather

than time.

6. Conclusions

In this paper we have introduced a new class of coarse-grained stochastic processes and associated

Monte Carlo simulations which are derived directly from microscopic lattice systems and describe meso-

scopic length scales. Detailed balance is employed as a systematic design principle to guarantee proper

inclusion of noise fluctuations in the coarse-grained model. Asymptotic analysis using Large Deviations

techniques and numerical comparisons of coarse-grained and conventional–microscopic–Monte Carlo

(MC) simulations delineate the validity regimes of the proposed coarse-graining procedure. It is also
demonstrated that the new models result in significant computational savings by reducing the cost of the

microscopic MC simulations by a factor of approximately q3, where q is the size of the coarse-graining.
Consequently the proposed coarse-grained MC simulations are capable of capturing large scale features,

while retaining microscopic information on intermolecular forces and particle fluctuations.

The proposed algorithms have the potential for significant impact on numerous technologically relevant

applications which are currently intractable with conventional MC simulations. Examples include pattern

formation at mesoscopic length scales on catalytic surfaces [11,14], transport through microporous films

[24], as well as growth processes of materials. Furthermore coarse-grained MC methods can provide a new
tool for the simulation of systems having a wide discrepancy of interrelated scales. One such process is

Chemical Vapor Deposition where micrsocopic interfacial phenomena typically simulated by MC methods

affect the large scale adjacent fluid flow [23]. In the same broad multiscale context but in an entirely different

direction, coarse-grained stochastic processes can be employed as mesoscopic stochastic models for unre-

solved features in atmospheric phenomena. For example such models and MC simulations can be directly

derived from microscopic stochastic models for the parameterization of tropical convection developed

recently in [19].

Fig. 9. CPU (in seconds) requirements vs. the number of coarse-grained cells, m, for two fixed total number of cells, N ¼ mq ¼ 1024
and N ¼ 2048, and a fixed number of 100 MCS. The parameters used are kaP ¼ kd ¼ 1;bJ0 ¼ 2; and L ¼ 256. The points are actual
data and the lines are power law fits. An almost cubic dependence of CPU on the number of cells is observed for large domains and

long potentials.
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From both a mathematical and applied perspective it is important to investigate further other coarse-

grainings which are designed for specific interaction potentials, based for instance on the the wavelet ap-

proach outlined in Section 3.3. In the rigorous analysis part of this paper we focused on error estimates and

asymptotics between the invariant measures of the coarse-grained and the microscopic processes; a follow-

up step in this direction is the comparison between the probability distribution functions of the two pro-

cesses as well as an explicit Large Deviation analysis, in non-equilibrium.
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Appendix A. Coarse-grained stochastic processes for surface diffusion

A spin exchange between the neighboring sites x and y is a spontaneous exchange of the values of the
order parameter at x and y. Physically this mechanism describes the diffusion of a particle on a flat surface.
Note that sites cannot be occupied by more than one particle (exclusion principle). As in the spin-flip

dynamics, a spin exchange occurs with rate cðx; y; rÞ satisfying the detailed balance law

cðx; y; rÞ ¼ cðx; y; rðx;yÞÞ expð�bDðx;yÞHðrÞÞ; ðA:1Þ

where rðx;yÞ is the new configuration after a spin exchange between sites x and y

rðx;yÞðzÞ ¼
rðyÞ when z ¼ x;
rðxÞ when z ¼ y;
rðzÞ otherwise:

8<
:

Furthermore

Dx;yHðrÞ ¼ Hðrðx;yÞÞ � HðrÞ ¼ rðxÞð � rðyÞÞ UðxÞð � UðyÞÞ ðA:2Þ

is the energy difference after performing a spin exchange between the neighboring sites x and y, and

UðxÞ ¼
X
z 6¼x

Jðx� zÞrðzÞ � h ðA:3Þ

is the total energy contribution from the particle interactions with the particle located at the site x.
The resulting stochastic process frtgtP 0 is a jump Markov process on L

1ðR;RÞ with generator given by

MNf ðrÞ ¼
X
x;y2L

cðx; y; rÞ½f ðrðx;yÞÞ � f ðrÞ�: ðA:4Þ

The simplest type of dynamics satisfying (A.1) is the Metropolis-type dynamics

cðx; y; rÞ ¼ Wð�bDx;yHðrÞÞ; when x and y are nearest neighbors;
0 otherwise;

�
ðA:5Þ
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where WðrÞ ¼ Wð�rÞe�r; r 2 R. Typical choices of W�s are WðrÞ ¼ 2ð1þ erÞ�1 (Kawasaki dynamics) and
WðrÞ ¼ e�rþ (Metropolis dynamics). As in the adsorption/desorption case for such dynamics, the energy
barrier for diffusion depends only on the energy difference between the initial and final states, often known

as the heat of the process.

On the other hand, in Arrhenius-type dynamics the activation energy of surface diffusion is defined as the

energy barrier a species has to overcome in jumping from one site to another [24]. The Arrhenius surface

diffusion (spin exchange) rate is given for nearest neighbors x and y by

cðx; y; rÞ ¼

c0 exp � b U0 þ UðxÞð Þ½ � when rðxÞ ¼ 1; rðyÞ ¼ 0;

c0 exp � b U0 þ UðyÞð Þ½ � when rðxÞ ¼ 0; rðyÞ ¼ 1;

0 otherwise

8>><
>>: ðA:6Þ

or equivalently

cðx; y; rÞ ¼ c0rðxÞ 1ð � rðyÞÞ exp ½ � b U0ð þ UðxÞÞ� þ c0rðyÞ 1ð � rðxÞÞ exp ½ � b U0ð þ UðyÞÞ�; ðA:7Þ

where UðxÞ is given by (A.3) while U0 is the energy associated with the surface binding of the particle at x
and c0 is a rate constant that can be chosen arbitrarily. Arrhenius dynamics also satisfy the detailed balance
law.

Here we proceed similarly to the spin-flip dynamics and define the coarse-grained process on Lc,

gtðkÞ ¼
X
y2Dk

rtðyÞ; k ¼ 1; . . . ;m;

set on the configuration space

Hm;q ¼ f0; 1; . . . ; qgLc ;

where g ¼ fgðkÞ : k 2 Lcg and gðkÞ 2 f0; 1; . . . ; qg is the coverage of the coarse cell Dk. We also define the

mapping F : R 7!Hm;q, where

F ðrÞðkÞ :¼
X
y2Dk

rðyÞ ¼ gðkÞ; k ¼ 1; . . . ;m:

Then for any function g 2 L1ðHm;q;RÞ,

f ðrÞ :¼ gðF ðrÞÞ ¼ gðgÞ 2 L1ðR;RÞ: ðA:8Þ

Recall that from the definition of the generator MN of frtgtP 0 we have that for all test functions
f 2 L1ðR;RÞ,

d

dt
Ef ðrÞ ¼ E

X
x;y2L

cðx; y; rÞ½f ðrðx;yÞÞ � f ðrÞ� ¼ E
X
k;l2Lc

X
x2Dk ;y2Dl

cðx; y; rÞ½f ðrðx;yÞÞ � f ðrÞ�: ðA:9Þ

However a straightforward calculation yields for x 2 Dk; y 2 Dl,

F ðrðx;yÞÞ ¼ F ðrÞ þ rðyÞ 1ð � rðxÞÞ dkð � dlÞ þ rðxÞ 1ð � rðyÞÞ dlð � dkÞ:

Thus, for the test functions f defined in (A.8) and x 2 Dk; y 2 Dl we have:

f ðrðx;yÞÞ ¼ rðyÞ 1ð � rðxÞÞgðg þ dk � dlÞ þ rðxÞ 1ð � rðyÞÞgðg þ dl � dkÞ:
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Substituting in (A.9) we obtain:

d

dt
EgðgÞ ¼ E

X
k;l2Lc

X
x2Dk ;y2Dl

cðx; y;rÞ rðyÞ 1ð½ � rðxÞÞgðg þ dk � dlÞ

þ rðxÞ 1ð � rðyÞÞgðg þ dl � dkÞ � gðgÞ�; ðA:10Þ

where the rate cðx; y; rÞ is given by (A.7), when x; y are nearest neighbors (it is equal to zero otherwise) and
x 2 Dk; y 2 Dl:

cðx; y; rÞ ¼ c0rðxÞ 1ð � rðyÞÞ exp ½ � b U0ð þ UðxÞÞ� þ c0rðyÞ 1ð � rðxÞÞ exp ½ � b U0ð þ UðyÞÞ�: ðA:11Þ

As in the case of adsorption/desorption we can replace UðxÞ by �UUðkÞ (resp. UðyÞ by �UUðlÞ). If in addition we
make the closure assumption that the particles are approximately independent inside each coarse cell Dk, we

can replace rðxÞ by q�1gðkÞ (resp. rðyÞ by q�1gðlÞ).
Then using the previous approximations in (A.10) we can define the new coarse-grained Markov process

g on Hm;q, satisfying for any g 2 L1ðHm;q;RÞ,

d

dt
EgðgÞ ¼ E

X
k;l2Lc

�ccðk 7! l; gÞ gðg½ þ dl � dkÞ � gðgÞ�: ðA:12Þ

The new rate �ccðk 7! l; gÞ describes the migration of a particle from the coarse cell Dk to cell Dl. It is is defined

using (A.11) as well as a time rescaling, as:

�ccðk 7! l; gÞ ¼ 1
q
gðkÞ qð � gðlÞÞc0 exp

h
� b U0
�

þ �UUðkÞ
�i

; ðA:13Þ

if k; l are nearest neighbors and �ccðk 7! l; gÞ ¼ 0 otherwise. The corresponding coarse-grained generator is
according to (A.12):

McgðgÞ :¼
X
k;l2Lc

�ccðk 7! l; gÞ gðg½ þ dl � dkÞ � gðgÞ�:
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